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Maximum Effective Range of Small Arms 
By Bryan Litz 

 
 In this article, I’ll attempt to define a method for finding the maximum 
effective range of a shooting system under the influence of predefined field 
variables.  This is accomplished using a 6-degree-of-freedom (6 dof) computer 
simulation that is able to model real world factors influencing the rotation and 
translation of spin stabilized projectiles.  I’ll then show how the results can be 
used to make decisions about what type of rifle is right for a particular 
application, and how far a weapon may be successfully employed against 
specific targets. 
 I’m basically attempting to improve on the antiquated logic that goes 
something like this: “My rifle can hold a zero, and 1 MOA groups at 100 yards.  
So if I have an accurate ballistics program indicating drop and drift, I should be 
able to hit a 10” target at 1000 yards”.  We all know this logic is flawed, but how, 
exactly?  What are the non-linear effects that prevent accuracy at short range to 
scale predictably at longer ranges?  Read on… 
 
Setting the Stage 
 First of all, as engineers like to do, I’ll start by making up words and 
assumptions in order to establish the scope of our study.  The first term to 
introduce is the “MER”, or “maximum effective range” of a weapon system.  The 
MER will be established using a set of MER conditions.  For this example, the 
MER conditions will be chosen to define the MER of a varmint-hunting rifle.  The 
metrics we chose to define the MER of this kind of rifle are: accuracy and lethality 
(lethality being a combination of kinetic energy and terminal bullet performance).  
If the bullet can be successfully delivered to the target with acceptable accuracy 
and lethality, the target is said to be within the MER of the shooter. 
 The rifle that is modeled for this experiment is a .243 caliber rifle with a 
1:12 twist, capable of 0.5 MOA at 100 yards using 80-grain varmint bullets,1 at an 
average muzzle velocity of 3000 fps.  The following MER conditions will be 
enforced.   

Accuracy: Shots must be guaranteed to impact within a 6” circle.  
Lethality: at least 500 ft-lbs of kinetic energy at impact. 
 

On our way to setting the stage, we introduce another term: field variables.  In 
the present context, field variables refer to all of the things in the field that 
compound to cause a well-aimed shot to miss the target.  Field variables include: 
misjudgments of wind speed and direction, range uncertainties, variation in 
muzzle velocity, Coriolis acceleration, uphill/downhill firing, gyroscopic drift, air 
temperature, humidity and pressure variations, limited precision of sight 
adjustments, lateral throw-off, aerodynamic jump, etc. 

For the present study, the field variables that will be used are: 

 
1 The Sierra .243 80-grain “Varminter” bullet was used for this example. 
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1. Left to right (pure cross-) wind is assumed to average 5 mph, with a +-2 
mph variation.  Sights are adjusted to account for the 5 mph prevailing 
condition. 

2. Muzzle velocity averages 3000 fps and has a +-10 fps error (20 fps 
extreme spread). 

3. Firing may occur on any heading at 30 degrees latitude.2 
4. Air temperature, humidity, and pressure are known to a degree such that 

the air density can be calculated to within +-5%. 
 

The final results of the trajectory modeling will show how much each field 
variable contributes to the overall miss distance. 

Let’s take a closer look at the field variables.  There are several types of field 
variables.  One might choose to separate them by how relevant they are for a 
particular application.  For target shooting at known distance with sighter shots 
allowed, most of the field variables are irrelevant.  For example, when shooting 
targets, the heading of each shot is the same, likewise with the range and air 
density.  And so for target shooting these things are not variable and will have an 
identical influence on every shot.  In fact for target shooting, the only interesting 
field variables are wind and muzzle velocity variation.  However, a hunting or 
military application requires that all of the variables be considered due to the 
combinations that are likely to be encountered in the field. 

One cause of dispersion that is not really a field variable is the “inherent rifle 
precision”.  Inherent rifle precision is easily obtained by observing the grouping 
potential of the shooting system at short range, before the field variables have a 
chance to influence dispersion.  A 50 or 100-yard group fired from a bench rest 
or bi-pod in little or no wind is a reliable indicator of inherent rifle precision.  Most 
varmint hunting rifles can be made capable of an inherent rifle precision in the 
range of 0.5 MOA.  0.5 MOA will be used for the present example. 

Up to this point, we’ve defined our project and scoped its application.  Keep in 
mind that most of the decisions made about MER conditions and field variables 
are simply assumptions.  Different conditions could be chosen to define a 
different type of MER.  There will be more discussion about selecting appropriate 
MER conditions and field variables later on. 
 
Modeling Exterior Ballistics Using the 6 Degree-Of-Freedom Computer 
Simulation 

So far, MER conditions, field variables, and inherent rifle precision have been 
put under the microscope.  Now lets take a closer look at our system.  It doesn’t 
matter what cartridge the .243 caliber rifle is chambered for, or how big the barrel 
is, or what kind of scope it has, etc.  All that matters is that we know it’s delivering 
the 80-grain bullets at an average muzzle velocity of 3000 fps at a twist rate of 1 
turn in 12 inches and is capable of 0.5 MOA groups at short range.   

The bullets flight, on the other hand, is the most complex and important part 
of a maximum range analysis.  Large amounts of time and effort have gone into 

 
2 This is for calculating the Coriolis effect. 
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searching for suitable tools to calculate the mass properties and aerodynamic 
coefficients of spin stabilized projectiles.  
 
Aerodynamics and Mass Properties 

 This section may be considered optional reading for those not interested in 
the “nitty-gritty” of how the computer simulation works.   

The semi-empirical aerodynamic prediction module of the PRODAS code3 
has been found to be most suitable for the task of generating aerodynamic 
coefficients for spin-stabilized projectiles.  PRODAS calculates aerodynamic 
coefficients by applying special curve fits to an empirical database of wind tunnel 
and firing test results.  An empirical method like this is much better at predicting 
aerodynamics in flight regimes that are governed mostly by viscous effects4, 
especially thru the transonic flight regime.  Also, since most bullets share 
relatively similar configurations, the slight variation of proportions means that the 
predicted aerodynamics for any bullet will not be too far from the observed 
aerodynamics of a bullet that was actually tested.  It’s really a well-suited tool for 
the application and represents the best aerodynamics prediction tool available 
(aside from actually performing a wind tunnel test or spark photography analysis 
of firing tests…$$). 

The mass properties of the bullet are simpler to calculate than the 
aerodynamics, but no less important.  Mass properties include the bullet mass, 
center of gravity, axial and transverse moments of inertia (Ixx and Iyy).  These 
properties are very important to the static and dynamic stability of the bullet in 
flight.  Just like mass is proportional to an objects linear acceleration due to an 
applied force (F=ma), the moment of inertia is proportional to an objects angular 
acceleration due to an applied torque (T=Iω).  We’re dealing with a 
gyroscopically stabilized projectile.  It’s very important to have an accurate 
description of the torque (overturning moment applied by the aerodynamics) and 
the gyroscopic stability (resulting from the bullets spin) in order to model the 
dynamics of the projectile.  Most discussion on the topic of stability is geared 
toward answering the question “how much spin is needed to stabilize a particular 
bullet”?  This is a very fundamental and important question to answer5.  However 
there are other gyroscopic effects on a stable spinning projectile that are also 
important to quantify.  Gyroscopic drift, lateral throw-off, and aerodynamic jump 
are several “6 degree-of-freedom effects” on a spinning projectile.  Now to finally 
answer the question of how the mass properties are calculated.  It’s a fairly 
straightforward procedure of segmenting the bullet into tiny cross-sectional disks, 
calculating the mass properties of each disk, and adding them all together.  While 
calculating aerodynamic coefficients can be more of an inexact “sum of least 
squares” fit, calculating mass properties is more like accounting. 

 
3 PROjectile Design Analysis System 
4 Magnus moment, roll and pitch damping are examples of viscous effects. 
5 See Don Millers Excellent article in the March 2005 issue of Precision Shooting “A new rule for 
estimating rifling twist – an aid to choosing bullets and rifles”. 
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Table 1 shows the mass properties and a truncated table of aerodynamic 
coefficients used to model the 80-grain varmint bullet. 

All of the mass 
properties are included in 
Table 1.  However, the 
complete tables of 
aerodynamic coefficients 
are too extensive to 
include here (see 
Appendix A).  I’ve chosen 
to show only 4 of the 16 
Mach numbers for each 
coefficient.  The 
coefficients shown in 
Table 1 are judged to be 
the most significant to the 
stability and flight 
dynamics of the bullet.  
Cxo is the “zero yaw” axial 
force coefficient, akin to 
the drag coefficient.  Clα 
and Cmα are the slopes of 
the lift curve and pitching 
moment coefficients 
(1/rad) respectively.   
Aerodynamic coefficients 
that are used, but not 

shown in Table 1 include: Cx2 (The quadratic dependence of Cx on alpha), 
Cmq_Cmad (Pitch damping derivatives), Cnpα (Magnus moment coefficient 
derivitive) and Clp (Roll damping coefficient).  There is much to explore within the 
realm of aerodynamics, but that’s not the focus of this study.  Lets continue with 
modeling the performance. 
 
Procedure for finding the Maximum Effective Range (MER) 

Remember that our objective is to find the MER of the system with the given 
field variables.  One way to do this is to choose the field variables randomly, 
within the defined boundaries, as inputs to the simulation.  This would result in a 
“group” of impact points for a particular range.  If none of the shots in the group 
were further than 3” from center (we defined a 6” diameter circle as the accuracy 
requirement) then we could conclude that that particular range was within the 
MER.  We would then repeat the process at increasing range until a miss 
occurred as a result of the field variables, thereby violating the predefined 
“accuracy” MER condition.  Luckily, there is a more efficient way to proceed. 

Since all of the field variables have been identified, and the direction of their 
influence is known, it is possible to conjure “worst case scenarios”.  The idea is to 

0.243 Caliber 80-Grain Sierra Varmint Bullet  

Drawing not to scale 
Mass Properties 

Bullet weight 80 grains 
Ixx 1.489E-8 Sl-ft2 
Iyy 1.135E-7 Sl-ft2 

CG from nose 0.532 in 
Aerodynamics 

MACH Cxo Clα Cmα 
1.2 0.467 2.488 2.374 
2 0.372 2.870 1.768 

2.5 0.330 2.959 1.449 
3 0.301 2.899 1.228 

Table 1. Geometry, Mass and aerodynamic properties of 
the 0.243 80-grain varmint bullet. 
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find the combination of field variables that work together to result in the greatest 
deflection in each direction.  As an example, lets try to imagine what combination 
of field variables result in the highest, furthest left shot possible, and then enter 
them as inputs into the simulation.   

The inputs for the high left shot would be (recall the field variables that were 
identified earlier):  
• Wind speed is left to right at 3 mph (Windage adjustment is made for an 

average speed of 5 mph, but the “wind” field variable is +/- 2 mph) resulting in 
an impact to the left of center. 

• Muzzle velocity is average, + 10 fps, or 3010 fps resulting in higher impact. 
• Shot is fired toward the east (Coriolis acceleration causes high shots when 

shooting to the east, and low shots when shooting west6)  
• Air density is 5% less than when the rifle was zeroed.  Decreased air density 

results in reduced drag, and a higher impact. 
The other 3 extreme corners of 
the impact area are found in a 
similar way by adjusting the value 
of the field variables within their 
defined bounds.  Figure 1 is a 
target showing the effects of 
applying the extreme set of field 
variables to a 300-yard target, 
and not correcting for the 
average 5mph wind. 
 In Figure 1, the circle with 
the “0” in it represents where the 
shots hit if elevation is corrected 
from a 100 yard zero, and no field 
variables are applied.  The circle 
around the digit represents the 
inherent accuracy of the rifle (0.5 
MOA).  Notice that the “0” impact 
is a little to the right.  This small 

(0.53”) deflection is a result of gyroscopic drift (0.40”) and Coriolis acceleration 
(0.13”).  These “6 degree of freedom effects” are present no matter what other 
influences exist.  Shots 1-4 are the results of applying the extreme set of field 
variables listed in Table 2, before the 5 mph average wind is corrected for.  
According to the 6-dof simulation, the 5 mph wind deflects the bullet 4.82” at 300 
yards.  After the 4.82” windage correction is made, the impact points in Figure 2 
result. 

 
6 The horizontal component of the Coriolis acceleration is not a field variable because it is always to the 
right, its magnitude fixed for given latitudes.  However, vertical Coriolis acceleration is a field variable 
because it depends on the direction of firing.  Shooting east causes high shots, shooting west causes low 
shots. 

Intermediate result 1 

 
Figure 1. Effect of field variables at 300 yards with  
no wind correction. 
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 Figure 2 indicates that 300 yards is beyond the Maximum Effective Range 
because some of the possible impact area lies outside of the 6” circle (Previously 
established accuracy MER condition).  In other words, the combination of field 
variables that resulted in shot 3 caused that shot to have a miss distance of 
greater than 3”.   

 At this point, finding the 
actual value of the MER is the 
objective.  We know it’s less 
than 300 yards.  Unfortunately, 
there is no way to calculate the 
MER in one step.  It must be 
done iteratively.  That’s not as 
bad as it sounds though 
because the entire procedure 
needs not be repeated for the 
subsequent trial ranges.  We 
know from the 300-yard target 
that shot #3 is the shot that will 
define the MER, so shot #3 is 
the only one we have to iterate 
for. 
 
 
 

 

  
We can see in Table 2 that shot number 3 impacted 1.68” low, and 3.04” 

right.  Yielding a total miss distance of 3.45”.  Add to that the 0.25 MOA (radius of 
grouping ability) that accounts for the inherent rifle precision, and we have a total 
possible miss distance of 4.24” for the 300-yard range.   

 
7 “Corrected” impacts mean that the 300-yard gravity drop, and 5 mph wind drift have been corrected for.  
The same sight settings were used for every shot at 300 yards.  The spread of impact points is due to the 
field variables. 

Intermediate result 2 

 
Figure 2. Effect of field variables at 300 yards,  
corrected for 5 mph wind 

300 Yards Extreme Set of Field Variables 
Corrected7 
300 Yard 
Impact 

Shot number 
Wind 

Speed 
(mph) 

Shooting 
Direction 

Muzzle 
Velocity 

(fps) 

Air 
Density 
(Sl/ft3) 

Elev. Wind. 

1 (high left) 3 East 3010 0.002259 0.23” -1.55” 
2 (high right) 7 East 3010 0.002259 -0.36” 2.13” 
3 (low right) 7 West 2990 0.002497 -1.68” 3.04” 
4 (low left) 3 West 2990 0.002497 -1.09” -1.14” 

Table 2. Point of impact for each shot subject to the assumed field variables 
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 Table 3 shows the total possible miss distance for other ranges, 
converging on the MER.  Figure 3 shows the effects of the field variables at the 
calculated MER of 248.5 yards. 

 So the accuracy MER 
condition is satisfied at a 
range of 248.5 yards.  At this 
range, the 80-grain bullet 
retains 2231 fps (shot #3 
conditions), which yields 883 
ft-lbs of kinetic energy, 
thereby satisfying the 
established 500 ft-lbs MER 
lethality condition.  If the 
bullet had less than the 
required energy, the MER 

would be dictated by decreasing the range until the 500 ft-lbs is satisfied, since 
the accuracy criteria was already met. 
 At the beginning of this article, I promised a component breakdown of the 
effects of each field variable on the trajectory.  Table 4 shows the influence of 
each of the field variables on the original 300-yard target for shot #3. 
 

Results Analysis 
 The MER for 
our system is found 
to be 248.5 yards.  
So what?  What can 
that information be 
used for?  I mean, 
everything’s been 
based on 
assumptions, and 
the results are only 
valid for one 
particular 
combination of 
assumptions, so of 

 
8 The vertical component of the wind deflection is due to aerodynamic jump. 

Final result 

 
Figure 3. Maximum Effective Range. 

Range Max possible 
miss distance 

300 4.24 inches 
200 2.02 inches 
250 3.03 inches 

248.5 3.00 inches 
Table 3. Iterating to find MER 

Contribution to total miss distance 
Shot #3 at 300 Yards 

Field variable Elev. Wind. 
Wind speed, Average 5 mph 
(+2mph error) -1.018” 2.51” 

Shooting direction, West  
(Coriolis acceleration) -0.23” 0” 

Muzzle Velocity, 2990 fps 
(-10 fps error) -0.16” 0” 

Air Density, Standard: 0.002378 Sl/ft3 

(+5% = 0.002497 Sl/ft3) -0.29” 0” 

Other “6 degree of freedom” effects  
Gyroscopic drift 0” 0.40” 
Coriolis acceleration N/A 0.13” 

Total: -1.68” 3.04” 
Table 4. Miss distance component build up. The totals match 
those listed in Table 2 for shot #3. 
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what use is the answer “248.5 yards”, really?  There are 2 basic ways that the 
preceding analysis can be applied.   

1. Hold the system constant and vary the field variables and/or the MER 
conditions. 

2. Hold the field variables and MER conditions constant and compare 
different systems (rifle/bullet combinations). 

In the first case, one can study the effectiveness of a given shooting system 
in different applications.  For example, lets say that our analysis of the 6mm 
bullet reflects the common application of someone that hunts varmints in 
Pennsylvania farm fields.  What if that person wanted to take a trip out west to 
hunt antelope and wonders if the .243 is “enough gun” for the job?  We know that 
the MER of the .243 is 248.5 yards for varmint hunting type field variables, but 
what is the MER of the .243 for big game hunting in the prairie?  The MER 
conditions and field variables would change.  The 6” accuracy requirement can 
be increased to the vital area of an antelope, maybe 8” or 10”.  But the impact 
energy might need to be increased to 800 or 1000 ft-lbs.  That might be hard to 
do with the 80-grain varmint bullet, so a bigger 6mm bullet is chosen.  Maybe a 
90 or 100 grain bullet.  As you can see, everything changes now that the 
application is different.  You end up with a different MER for big game as for 
varmints, even though it’s the same rifle.  And even with the same application, 
you can vary the MER conditions and field variables as much as you like to come 
up with a MER that’s most relevant for the application. 
 The second case allows “apples to apples” comparison between different 
rifles for the same application.  Lets say the owner of the .243 is considering a 
new rifle for the same type of varmint hunting.  A popular alternative might be 
one of the fast and flat .22’s like the .220 Swift, or .22-250.  In this case, a study 
would be done on a likely .224 caliber bullet at an expected muzzle velocity to 
see what kind of MER the system has with the same field variables and MER 
conditions as the .243.  
 A basic capability for the preceding analysis is offered by most “off-the-
shelf” ballistics programs that do a fine job of predicting wind drift and gravity 
drop.  However, I believe a more sophisticated analysis, which captures “6 
degree-of-freedom effects”, may be more appropriate when making comparisons 
and decisions regarding the Maximum Effective Range of small arms. 
 
Using the 6-dof simulation to increase Maximum Effective Range 
 Take another look at Figure 3 and note the impact area of the 4 shots.  
Your first thought might be “if they were centered, the MER could be extended”.  
The problem is that none of the available ballistics programs capture the “6 
degree of freedom” effects.  They all have analytic solvers, which makes them 
very fast and accurate predictors of gravity drop, drag, and wind drift even for 
non-standard atmospheric conditions.  However, those analytic solvers cannot 
calculate “6 degree of freedom effects” such as gyroscopic drift, aerodynamic 
jump, yaw dependant drag, etc.  Also, the G1 drag function used in modern 
ballistics programs is not an accurate drag profile for long boat-tailed bullets.  
That’s why the B.C. has to be defined piecewise as a function of velocity.  The 6-
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degree of freedom program uses a numerical solver, which allows the equations 
of motion to be solved using the actual drag, and not rely on an average fit to a 
non-representative standard.  The problem with the 6-degree of freedom 
program is speed.  It took about 2 minutes for each of the 300-yard trajectories to 
run on my desktop computer equipped with a 2.08 GHz processor.  It’s rather 
impractical to think that a ballistics program running a full 6-degree of freedom 
simulation can be run on a palm pilot in the field where it’s needed.  However, 
there is an alternative… 
 Run the analytical solution and apply pre-tabulated 6-dof effects to 
the basic drop and drift results.  The whole program could run at practically 
the same speed and provide corrections resulting in more centered shots.  The 
pre-tabulated 6-dof effects would need to be very specialized for a particular 
shooting system.  For example, drift would depend on twist rate and latitude as 
well as wind speed and direction.  Elevation would depend on wind drift and firing 
direction as well as muzzle velocity, range, gravity, etc. 
 This is a very interesting project, and may be the topic of a follow-up 
article, depending on how well this “modeling and simulation business” is 
accepted by PS subscribers. 
 
The Horizon 
 The section on “Results Analysis” explains the immediate relevance of 6 
degree-of-freedom trajectory analysis as it applies to the maximum effective 
range of small arms.  I would like to go a step further and suggest some possible, 
broader applications of the MER idea. 
 Imagine if the entire sporting arms industry were able to agree on a 
common set of MER conditions and field variables to use for a particular hunting 
application.  There could be an “agreed-upon” standard to use for every 
application from prairie dog hunting to big game.  Then you could effectively 
“rack-and-stack” all of the options for a particular application (because it’s a true 
“apples-to-apples” comparison).  Right now, the decision of what rifle to choose 
is mostly made by a combination of experience, advice, and common sense.  I’m 
not hoping to replace these valuable, time proven ideas, but add to them the 
advantage of detailed engineering analysis.   
 The “MER paradigm” effectively lays down a yardstick by which to 
measure the potential value of new products as well.  Say, for example, a 
company markets a new bullet with a higher density core.  The bullet can be 
loaded in any existing standard chambering at the cost of slightly reduced muzzle 
velocity, and retain much more downrange energy via the elevated B.C..  This 
will increase the accuracy limits of the system.  If the bullet exhibits acceptable 
terminal performance such that the lethality MER condition is also met, then the 
new bullets have real potential for increasing the MER of a shooting system9.  
Realizing that an improvement can be made using such bullets is common 
sense.  However, the MER analysis can show exactly how much of a benefit may 
be realized. 

 
9 This assumes, naturally, that the new bullets are manufactured with acceptable quality control. 
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Appendix A 

 
Complete Table of Aerodynamics for the Sierra 80 grain varmint bullet used in 

the example 
 

Tabulated Aerodynamics 
MACH CxO Cx2 Cnα Cmα Cmq+Cmαd Cnpα Cnpα3 Cnpα5 Clp 

0.01 0.173 2.271 1.934 2.35 -5.63 -0.433 104.3 -2455.4 -0.012 
0.60 0.164 2.271 1.934 2.37 -5.63 -0.433 104.3 -2455.4 -0.012 
0.80 0.177 2.764 1.954 2.49 -5.63 -0.315 94.5 -2201.4 -0.011 
0.90 0.205 3.227 2.031 2.62 -5.70 -0.109 67 -1333.5 -0.010 
0.95 0.269 3.593 2.204 2.69 -6.00 0.073 50.3 -730.3 -0.010 
1.00 0.395 4.018 2.305 2.62 -6.50 0.157 36.1 -722.3 -0.010 
1.05 0.482 4.441 2.41 2.50 -7.00 0.227 22.3 -502.7 -0.010 
1.10 0.477 4.949 2.429 2.43 -8.00 0.256 15.7 -333.4 -0.009 
1.20 0.467 5.405 2.488 2.37 -9.00 0.262 11 -220.1 -0.010 
1.35 0.446 4.844 2.576 2.29 -10.00 0.274 9.1 -169.3 -0.009 
1.50 0.427 4.263 2.683 2.18 -10.57 0.28 8.1 -143.9 -0.009 
1.75 0.398 3.699 2.775 1.97 -10.57 0.286 7.1 -118.5 -0.010 
2.00 0.372 3.131 2.87 1.77 -10.57 0.292 6.2 -93.1 -0.010 
2.50 0.330 2.517 2.959 1.45 -10.57 0.298 5.2 -67.7 -0.010 
3.00 0.301 2.077 2.899 1.23 -10.57 0.304 4.2 -42.3 -0.010 
4.00 0.259 1.677 2.799 1.27 -10.57 0.304 4.2 -42.3 -0.010 

Table A1.  Complete table of aerodynamic coefficients used to model the 80 grain Varmint bullet 
 
 

Definitions and terminology 
α Total angle of attack in Radians 
Cx = Cxo + Cx2*(sinα)2 Axial force coefficient 
Cnα Normal force coefficient derivative (1/rad) 
Cmα Overturning moment coefficient derivative (1/rad) 
Cnpα = 
Cnpα+Cnpα3α2+Cnpα5α4 

Magnus moment coefficient derivative (1/rad) 

Cmq+Cmαd Pitch damping moment coefficient 
Clp Spin decay roll moment coefficient 
Table A2. Descriptions of the aerodynamic coefficients used in the computer simulation 
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Zero Yaw Axial Force Coefficient 

 
Figure A1. Comparison of PRODAS data (used in simulation) to the drag coefficient 
corresponding to Sierra’s advertised B.C..  Note, the PRODAS data shows the “Zero Yaw” 
Cxo, however the Sierra points come from actual firing tests, which may include some 
small yaw dependant drag component. 
Sref = 0.0464 in2 
 
 
 
 
 

Normal Force Coefficient Derivative (1/rad) 

 
Figure A2. Normal force coefficient derivative calculated by PRODAS.   
Sref = 0.0464 in2 
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Overturning Moment Coefficient Derivative (1/rad) 

 
Figure A3. Overturning, or pitching moment coefficient derivative calculated by PRODAS.  
The spike near Mach 1 is why most bullets will become unstable and “tumble” near 
transonic speeds.   
Sref = 0.0464 in2      Dref = 0.243 in 
 
 
 
 
 

Pitch Damping Moment Coefficient 

 
Figure A4. Pitch damping moment coefficient calculated by PRODAS.  The pitch damping 
moment coefficient consists of two components: pitch damping due to pitch rate (Cmq), 
and pitch damping due to rate of change of alpha (Cm’alpha-dot’).  
Sref = 0.0464 in2      Dref = 0.243 in 
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Roll Damping Moment Coefficient 

 
Figure A5. Roll damping moment coefficient calculated by PRODAS.   
Sref = 0.0464 in2      Dref = 0.243 in 
 
 
 
 
 

Magnus Moment Coefficient Derivative (1/rad) 

 
Figure A6. Magnus moment coefficient derivative (1/rad) calculated by PRODAS.   
Sref = 0.0464 in2      Dref = 0.243 in 
 
 



 
 

 © 2021 Applied Ballistics, “All rights reserved. This document contains proprietary 
information. Do not distribute without the prior written consent of the copyright 
owner.” 
 

15	

 
 
 


